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Libration points: Ideal locations for human/robotic
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Several successful past missions: ISEE-3, SOHO.

Active station-keeping required.
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Common station-keeping approaches:
Discrete

Discrete LQR [Folta and Vaughn, 2004]
Chebyshev-Picard iterations [Bai and Junkins,
2012]

Continuous

Continuous LQR [Nazari et al., 2014]
Nonlinear optimization [Ulybyshev, 2015]
Linear MPC [ Peng et al., 2017, Kalabić et al.,
2015]
Nonlinear MPC [Li et al., 2015]

Goal for this work: Globally optimal constrained
receding horizon solution.
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Motion near libration points

Equations of motion with origin at L1 libration point

ẍ = 2ẏ + (1− γL) + x − (1− µ)

r31
(1− γL + x)

+
µ

r32
(γL − x)− µ

ÿ = −2ẋ + y − y(1− µ)

r31
− yµ

r32

z̈ = −(1− µ)
z

r31
− µ z

r32

γL: Distance between L1 and primary
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Legendre Polynomial Approximation

Equations of motion in terms of legendre
polynomials

ẍ − 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn(

x

ρ
) (1)

ÿ + 2ẋ + (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn(

x

ρ
) (2)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn(

x

ρ
) (3)

cn = γ−3L (µ+ (−1)n(1− µ)( γL

1−γL
)n+1)
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Polynomial Approximations

Richardson’s third order approximation

ẍ − 2ẏ − (1 + 2c2)x =
3

2
c3(2x2 − y2 − z2)

+ 2c4x(2x2 − 3y2 − 3z2) +O(4)

ÿ + 2ẋ + (c2 − 1)y = −3c3xy −
3

2
c4(4x2 − y2 − z2)y

+O(4)

z̈ + c2z = −3c3xz −
3

2
c4z(4x2 − y2 − z2)

+O(4)

Analytic periodic solution based on
Lindstedt-Poincarè perturbation method
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Polynomial Approximations

Analytical methods: qualitatively insightful, but
insufficient for dynamical analysis.

Combined with differential correction for trajectory
refinement.

-5

0

5

4

z

10-4

10

2

y

10-3

0

Non-dimensional units

-2

x

0.991-4
0.99

0.989

L
1

Analytical solution
Single shooting

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

8 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Polynomial Approximations

Analytical methods: qualitatively insightful, but
insufficient for dynamical analysis.

Combined with differential correction for trajectory
refinement.

-5

0

5

4

z

10-4

10

2

y

10-3

0

Non-dimensional units

-2

x

0.991-4
0.99

0.989

L
1

Analytical solution
Single shooting

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

8 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Polynomial Approximations

Analytical methods: qualitatively insightful, but
insufficient for dynamical analysis.

Combined with differential correction for trajectory
refinement.

-5

0

5

4

z

10-4

10

2

y

10-3

0

Non-dimensional units

-2

x

0.991-4
0.99

0.989

L
1

Analytical solution
Single shooting

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

8 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Polynomial Approximations

Taylor expansions considered in this study.

Numerically more accurate compared to Legendre
expansions.

Second order Taylor expansion model.

ẍ = 2ẏ +

(
3µ

2γ4L
− 3µ− 1

2(γL − 1)4

)(
2x2 − y2 − z2

)
+

(
2µ

γ3L
− 2µ− 1

(γL − 1)3

)
x − µ− γL

+
µ

γ2L
− µ− 1

(γL − 1)2
+ 1
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Polynomial Approximations

ÿ = −2ẋ −
(

3µ

γ3L
− 3µ− 1

(γL − 1)3

)
xy +

(
1− µ

γ3L
+

µ− 1

(γL − 1)3

)
y

z̈ = −
(

3µ

γ3L
− 3µ− 1

(γL − 1)3

)
xz +

(
µ− 1

(γL − 1)3
− µ

γ3L

)
z

Approximate polynomial model to be used for
polynomial optimization based MPC.

General methodology, can be applied to similar
dynamical regimes.

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

10 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Polynomial Approximations
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Polynomial Optimization

Polynomial: finite combination of monomials

p(x) =
∑
α

cαx
α =

∑
α

cαx
α1
1 ...xαn

n , cα ∈ R

Consider optimization problem

minimize
x

f (x)

subject to x ∈ K

K := {x : gj(x) <= 0, j = 1, 2, 3..}
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Polynomial Optimization

Definition

A polynomial is denoted as sum of squares (SOS) if it
can be represented as

f (x) =
∑
j∈J

(
gj(x)

)2
(4)

Alternatively, f (x) with degree 2d and in n variables is
SOS if

p(x) = zTQz (5)

where Q � 0 and z = [1, x1, x2...xn, x1x2...x
d
n ] is the

vector of monomials upto degree d .
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Polynomial Optimization

Non-convex and NP complete.

Using lifted variables, expressed as with lifted
variables as

maximize
x∈K,λ∈R

λ

subject to f (x)− λ ≥ 0
(6)

Approach: Relax problem by replacing
non-negativity with positivity.
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Sum-of-Squares and Positivity Certificates

Weak (relaxed) form of polynomial optimization in
terms of positivity (in particular sum-of-squares
(SOS))

maximize
x∈K,λ∈R

λ

subject to f (x)− λ = s0(x) +
m∑
j=1

sj(x)gj(x)

SOS formulation comes from Putinar’s
positivstellensatz.
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Sum-of-Squares and Positivity Certificates

Lemma (Putinar’s positivstellensatz)

Define the quadratic module generated by gj as Qg

Q(g) := σ0 +
m∑
j=1

σjgj

where (σ)mj=0 are SOS. Assume there exists u ∈ Qg such
that the level set {x ∈ Rn : u(x) ≥ 0} is compact. If
f (x) > 0 on K, then f (x) ∈ Qg (for some SOS
polynomials (s(x))mj=0).

f (x) = s0 +
m∑
j=0

sjgj
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Sum-of-Squares and Positivity Certificates

Result: Semidefinite program (SDP), solvable using
interior point methods.

Relaxed SDP solution: PSOS (lower bound).

Bounds can be strengthened by increasing t.

PSOS(t) ≤ PSOS(t + 1) ≤ P∗

Globally optimal solution

SOS, t = 1

SOS, t = d

SOS, t = 2
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Positivity Certificates and Dual Moment
Relaxations

Alternate positivity certificates exist:
Krivine-Vasilescu-Handelman (LP), Schmüdgen
(SOS)
Dual framework: Moment SOS approach

maximize
y

cTy

subject to Mt(y) � 0

Mtj (gjy) � 0, j = 1, 2..m

y0 = 1

Solve hierarchy of SDPs with ⇑ t (Lasserre
Hierarchy).
Monotonic convergence to global optimum
[Lasserre, 2001]
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Model Predictive Control

Repeated solution of a constrained open-loop
optimal control problem.

For non-convex problems: locally optimal solutions.
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Model Predictive Control

Consider f (., .) as polynomial vector field.

Assume X and U as basic real semi-algebraic sets.

In compact form

ζ = [xk+1|k , xk+2|k , ....xk+N|k ]T

Using a recursive relation, ν = [uk|k , ....uk+N−1|k ]T

and xk

ζ = F (ν, xk)

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

19 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Model Predictive Control

Consider f (., .) as polynomial vector field.

Assume X and U as basic real semi-algebraic sets.

In compact form

ζ = [xk+1|k , xk+2|k , ....xk+N|k ]T

Using a recursive relation, ν = [uk|k , ....uk+N−1|k ]T

and xk

ζ = F (ν, xk)

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

19 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Model Predictive Control

Consider f (., .) as polynomial vector field.

Assume X and U as basic real semi-algebraic sets.

In compact form

ζ = [xk+1|k , xk+2|k , ....xk+N|k ]T

Using a recursive relation, ν = [uk|k , ....uk+N−1|k ]T

and xk

ζ = F (ν, xk)

Gaurav Misra, Hao Peng, and Xiaoli Bai Halo Orbit Stationkeeping using Nonlinear MPC and Polynomial Optimization

19 / 31



Outline

Introduction

Circular
Restricted
Three Body
Problem

Global
Polynomial
Optimization

Polynomial
MPC

Numerical
Results

Conclusions

tugraz
Rutgers, The State University of New Jersey

Model Predictive Control

Theorem

[Raff et al., 2006] The finite horizon optimal control
problem can be formulated as a polynomial optimization
problem of the form

minimize
ν∈K

p0(ν)

for discrete time polynomial systems, if
K = {ν ∈ Rm.N : pi (ν) ≥ 0, i = 1, 2...2(n + m)N + 1}, is
a compact set described by
pi (ν) ∈ R[ν], i = 1, 2...2(n + m)N + 1.

Approach: Repeatedly solve polynomial
optimization in receding horizon manner using
moment-SOS approach.
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Model Predictive Control

MPC problem for trajectory tracking

minimize
u

Np−1∑
i=1

eT
i |kQei |k + uT

i |kRui |k + eT
Np |kPeNp |k

subject to xi+1|k = f (xi |k , ui |k)

ui |k ∈ U
xi |k ∈ X
xk+N ∈ Xf , i = k, k + 1....k + N − 1

Tracking error: ei|k = xi|k − xdi|k .
Q � 0, R � 0.
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Sun-Earth CRTBP Halo Orbit Tracking

Sun-Earth L1 halo orbit station-keeping.

Large insertion error: ≈ 40, 000 km in x direction.

Polynomial MPC parameters

Parameter Value

Q diag(
[
106 106 106 1 1 1

]
)

P Discrete algebraic Riccati solution
R diag(

[
103 103 103

]
Np 15
N 60
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Sun-Earth CRTBP Halo Orbit Tracking

Three-dimensional polynomial MPC trajectory

Coordinate frame centered at L1
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Sun-Earth CRTBP Halo Orbit Tracking

Trajectory projection in XY, XZ plane
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Sun-Earth CRTBP Halo Orbit Tracking

0 50 100 150

-2

-1

0

10-4 u
x

u
y

u
z

Scheme ∆V (ms−2) Solver

PMPC (global) 7.94×10−4 Gloptipoly with Mosek
Nominal NMPC 6.81×10−4 IPOPT
PMPC (local) 9.02×10−4 IPOPT

LQR 7.01×10−4 NA
LMPC 9.78×10−4 Gurobi
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Sun-Earth CRTBP Halo Orbit Tracking

10 20 30 40 50 60
10-2

100

102

104

PMPC LMPC NMPC

Np 2 6 10

PMPC ∆V 0.001 8.45×10−4 8.11×10−4

NMPC ∆V DNC 6.94×10−4 6.87×10−4

LMPC ∆V DNC 0.001 0.0012
LQR ∆V 7.01× 10−4 7.01×10−4 7.01×10−4
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Earth-Moon CRTBP Lissajous Orbit
Tracking

Nominal orbit corrected by multiple shooting.
Insertion error: 9500 km in x-direction
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Earth-Moon CRTBP Lissajous Orbit
Tracking

Horizon length: 100, 22 days

Prediction horizon: 10, 5.45 hours

Control accelerations
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Earth-Moon CRTBP Lissajous Orbit
Tracking

Tracking errors

0 5 10 15 20

-1

-0.5

0

0.5

1

104 x y z

Tracking convergence in approximately 3 days.
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Earth-Moon CRTBP Lissajous Orbit
Tracking

Np 2 6 10 15

PMPC ∆V 0.059 0.03212 0.03206 0.0318
NMPC ∆V DNC 0.03219 0.03212 0.032
LMPC ∆V 0.117 0.0475 0.047 0.0465
LQR ∆V 0.12 0.12 0.12 0.12

Overall, PMPC outperforms LQR, LMPC.

Similar performance as NMPC but no initialization
or warm start required.
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Conclusions and Future Work

Conclusions
Polynomial optimization based MPC proposed.

Globally optimal solutions
No initial guess needed.
Limited by prediction horizon length.

Future work

Consider full ephemeris model.
Robust MPC based techniques to ensure controller
performance in presence of uncertainty.
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